

Video Scene

Classification MPA

- » Scene classification definition
- » State of the art:
 - > Representation:
 - + Global centered;
 - + Local centered;
 - > Classification:
 - + Discriminative;
 - + Generative
- » Functional pipeline
- » Scene classes definition
- » Database population
- » Library experience/survey:
 - > Pc environment
 - > Library/SDK available

» Scene classification (also known as Visual categorization) aims to automatically classify images into a set of different semantic classes, based on information extracted from the images.

» Global Centered:

- Scene as a single entity. The identification of the constituent objects/concepts is bypassed.
 - + Spatial Domain: *BoW (Bag of visual Words)*
 - + Frequency Domain: FFT Domain, Textons, DCT Domain

» Local centered:

- > Scene defined as a collection of previously recognized objects/concepts within the scene;
- > Require object recognition as first step (Semantic Texton Forests)

State of the art: Representation

Face-to-Face Meeting. Hosted by ? in ? on the ?th and ?th of ? 20??

WP?-DD-MM-YYYY

» Discriminative (e.g.
SVM, Random Decision forest)

» Generative (e.g. LDA,

HLDA, PLSA, Bayesian)

• Direct modeling of $\frac{p(zebra \mid image)}{p(no \ zebra \mid image)}$

- Model p(image| zebra) and p(
 - p(image | no zebra)

	p(image zebra)	p(image no zebra)
226	Low	Middle
A B	High	Middle→Low

State of the art: Classification

Face-to-Face Meeting. Hosted by ? in ? on the ?th and ?th of ? 20?? WP?-DD-MM-YYYY

» The idea is to use two different types of features: camera statistics (focus, gain, white balance, exposure, histogram, etc.) and features extracted from the luminance plane (at least)

- » A list of scene classes has been defined according to the Use Cases (phone call March 28th 2012):
 - > Day/night: OK with camera parameters (when they will be available);
 - > Indoor/outdoor;
 - > Man-made/natural;
 - > Street/street intersection;
 - > Home rooms (bedroom, kitchen, living room, bathroom);
 - > Corridor/shelves (in a supermarket);
 - > Supermarket vs. (a precise list of classes has to be defined)
- » Other classes:
 - > Crowded/non-crowded: a completely different approach is needed for this task;
 - > Text class could be also useful (some tests with our approach give very good results)

Scene classes definition

- » Download of publicly available datasets;
- » Automatic download from the Internet (e.g. flickr) according to specific tags;
- » Acquisition of images and statistics (when they will be available) through the STE U9500 platform;
- » Who, when, how will populate the Database?
- » Will camera and ISP statistics be available?

Database population

- » Operating system:
 - > Windows (No dependencies from specific API);
- » Programming language:
 - > C/C++;
- » Library dependencies:
 - > OpenCV (Camera, image handling);
 - > LibSVM (source code available);
- » Build system:
 - > Qt Creator, qmake for Nokia N900
 - > ad-hoc make file compatible with eclipse IDE should be possible

Library experience >,